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Abstract

One way to achieve high data rate and bandwidth efficient wireless communications is

to employ multiple transmit and receive antennas creating a Multiple-Input Multiple-

Output (MIMO) system, combined with Linear Dispersion (LD) codes. Sphere De-

coder (SD) is a low complexity Maximum Likelihood (ML) method of decoding LD

codes.

Using Subspace Matched Filtering principles, two complexity reducing front-ends

to any variant of the SD, are developed. These two-stage decoders are designed to

only have marginally worse performance than SD.

Computer simulations confirm the lower complexity and close to ML performance

of the two-stage decoders. For a two transmit and two receive antenna LD coded

MIMO system at an SNR of 22dB, the two-stage decoder reduces the average size of

the SD search tree by a factor of 5. The BER performance of the two-stage decoder

is within 0.25dB of the ML performance.
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Sommaire

Dans les systèmes de communications sans fil, une façon d’atteindre des débits de trans-

mission élevés et une haute efficacité spectrale consiste à utiliser des antennes multi-

ples du côté de l’émetteur et du récepteur (créant un canal Multi-Entrées Multi-Sorties

(MEMS) ) ainsi que des codes à dispersion linéaire (DL). Le Décodage Sphérique (DS)

est une méthode à basse complexité pour décoder les codes DS avec une performance

semblable à celle du maximum de vraisemblance (MV).

Utilisant des principes du Filtrage Adapté Sous-espace et pour toute variante du

DS, un module précédant le DS est développé pour deux systèmes différents dans le

but de réduire la complexité. Cependant, ces méthodes de décodage introduisent une

faible pénalité sur la performance.

Des simulations numériques confirment que les codes proposés réduisent la com-

plexité et ont une performance proche de celle du MV. Pour un système DL MEMS

avec deux antennes de transmission et deux antennes de réception, à 22dB, le décodage

proposé réduit la complexité moyenne de DS par un facteur de 5. En termes de taux

d’erreur binaire la performance du décodage proposé est à 0.25dB de la performance

du MV.
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Chapter 1

Introduction

Future wireless communication systems will require much higher throughputs in order

to deliver high voice quality, reliable video, and advanced mobile applications [1,2]. All

these services compete for a limited spectrum which, in many cases, must be licensed

from the government. The main obstacle to reliable wireless communications is the

multipath time-varying channel that causes fading [3,4,5].

Diversity, a technique to combat fading, can be realized with no bandwidth ex-

pansion by increasing the number of receive antennas or, more recently developed, by

increasing the number of transmit antennas [6]. These techniques are referred to as

receive diversity and transmit diversity. Increasing the number of transmit antennas is

more practical in the downlink of many wireless communication systems since it only

increases hardware complexity at the base station rather than at each mobile unit.

One way of achieving diversity using multiple transmit antennas involves sending the

same symbol from each sufficiently spaced transmit antenna so that the channel expe-

rienced by each transmitted symbol undergoes independent fading. Interestingly, the

random scatterer filled environment can be used to create multiple effective channels

which can, besides being used for diversity, be exploited to simultaneously transmit
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different symbols in order to dramatically increase throughput without increasing sys-

tem bandwidth [7]. At the same time multiple receive antennas can still be used for

diversity. For this reason Multiple-Input Multiple-Output (MIMO) antenna systems

have a much greater capacity than single antenna systems [8].

When the transmit diversity order is equal to the number of transmit antennas the

system is said to have achieved full transmit diversity. Likewise, when the number

of transmit antennas is equal to the transmission rate, in symbols per channel use,

the system is said to achieve full spatial multiplexing. The Alamouti scheme for two

transmit antennas [6] and Tarokh’s Orthogonal Space-Time Block Codes (O-STBCs)

[9] for more than two transmit antennas are techniques for achieving full transmit

diversity that also allow for low complexity symbol-by-symbol Maximum-Likelihood

(ML) detection. The O-STBCs and the Alamouti scheme can only achieve at most

a rate of one symbol per channel use. Another technique, V-BLAST [7] (uncoded

transmission), does not use the transmit antennas for diversity but can achieve full

spatial multiplexing, a throughput of NTX (the number of transmit antennas) symbols

per channel-use. A limitation, imposed by the V-BLAST detection scheme, is that the

number of transmit antennas must be less than the number of receive antennas [10].

Another limitation of V-BLAST transmission is its lack of any spatial or temporal

coding and their resulting error resilience [10].

A class of codes that subsumes both O-STBCs as well as V-BLAST, are known as

Linear Dispersion (LD) codes [10], are designed by optimizing the mutual information

between the transmitted and received signals while maintaining a linear structure in

the transmitted symbols. LD codes achieve diversity from coding as well as spec-

tral efficiency from spatial multiplexing. Linearity aids in decoding and allows the

transmission rate to increase at the expense of losing orthogonality between transmit

antennas. The LD codes are shown to outperform both O-STBCs and V-BLAST at a
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given transmission rate for a wide range of SNRs, number of receive antennas (NRX),

and number of transmit antennas (NTX). However, the LD codes are neither guar-

anteed to achieve full transmit diversity nor full spatial multiplexing but normally

achieve some intermediate level of both. Performance is boosted by spatial multiplex-

ing since, at a fixed rate, this allows for the use of a smaller symbol constellation.

LD codes can be designed for any NRX and NTX and therefore can be used in the

downlink where NTX is normally greater than NRX .

Of major concern for all of these techniques is ML detection computational com-

plexity. O-STBCs, due to their forced orthogonal structure, allow for linear complexity

ML detection. In contrast, ML detection of V-BLAST and LD codes has exponen-

tial computational complexity in both NTX and the size of the symbol constellation.

There are other suboptimal lower complexity detection methods for V-BLAST and LD

codes such as zero-forcing (ZF) detection, minimum mean squared error (MMSE) de-

tection, and decision feedback detection. These methods, however, result in significant

performance degradation compared to ML detection.

Recently, it has been shown that ML decoding with a lower than exponential com-

plexity is possible for certain linear, non-orthogonal, codes using the sphere decoder

(SD) [10,11]. Rather than considering all possible symbol vectors, as is done for the

exhaustive search ML detector, the SD searches for symbol vectors within a spheroid

centered by an estimate of the transmitted symbol vector. SD achieves ML perfor-

mance detecting either an uncoded symbol vector or LD codewords since both are

linear in terms of the transmitted symbols [10]. The computational complexity of SD

is dependant on the realization of the channel matrix with the expected value of its

complexity being a third degree polynomial in the number of transmit antennas [12].

Computational complexity gains over the original SD can be achieved by beginning

the search for symbol vectors in the center of the spheroid rather than at the edge
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[13,14], a technique known as the Schnorr-Euchner (SE) algorithm [15]. Another mod-

ification, Statistical Pruning [16], also offers a reduction in computational complexity

at only a small compromise in performance. Statistical Pruning and the SE algorithm

both extend the number of dimensions that the SD can handle before it reverts to

exponential complexity.

Like LD codes, layered space-time codes [17] (also called D-BLAST) can achieve

both diversity and spectral efficiency. A benefit to using a multi-antenna D-BLAST

code is its simplicity since it is made up of many of single-antenna code blocks. D-

BLAST decoding, however, always contains nulling and canceling and so ML perfor-

mance cannot be achieved.

Another technique, lattice basis reduction, was first proposed in the context of

detection for MIMO systems as an optional front-end to the SD to improve its speed

and numerical stability [13]. Various lattice basis reduction algorithms exist each with

its own criteria for finding the equivalent basis whose elements are reasonably short

and orthogonal. One such algorithm, known as Korkine-Zolotareff (KZ) reduction [13],

has fairly high complexity but good performance and would therefore be appropriate

for detection in a slow fading environment where the channel matrix is constant over

many channel-uses and lattice reduction is done infrequently. Otherwise, in situations

where KZ reduction would be too slow, LLL (Lenstra, Lenstra, and Lovasz) reduction

[18], offering lower performance but at a much reduced complexity, is recommended

[13].

Lattice basis reduction was also considered as a front-end to both linear and non-

linear suboptimal detectors [19]. Using a modified form of LLL reduction for two

dimensions it was shown that LLL lattice-basis-reduced suboptimal detection has bet-

ter performance with minor extra complexity than lattice-basis-unreduced suboptimal

detection. This work was then extended to more than two dimensions using the LLL
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algorithm [20]. A drawback of the lattice-basis-reduction front-end is that it distorts

the symbol constellation. This drawback, besides adding complexity to the detector,

also results in decreased performance that becomes less as the size of the QAM con-

stellation increases since the symbol constellation begins to approximate an infinite

lattice [13,19]. It is suggested in [12] that the drawbacks of lattice basis reduction

make it an unpromising approach to reduced complexity decoding.

The contributions of this thesis are:

• Using Subspace Matched Filtering (SMF) principles [21,22], two complexity re-

ducing front-ends to any variant of the SD, were invented. Either of the re-

sulting two-stage decoders can achieve lower complexity decoding of either LD

codes or uncoded (V-BLAST) transmission. The performance of these two-stage

decoders, unlike those based on estimation and cancelation techniques, can be

made arbitrarily close to ML.

• Developed computer simulations to show the tradeoff between performance and

complexity for these two two-stage decoders. These simulations confirm the

complexity advantage and close to ML performance of both two-stage decoders.

This thesis is organized as follows. Chapter 2 presents the system assumptions

and both the uncoded and coded frameworks. Then, certain pertinent mathematical

results and existing decoding methods are explained. In chapter 3 the Statistical

Partial Coverage (SPC) front-end to the SD is described, analyzed, and simulated for

both frameworks. Then, in chapter 4, another low complexity front-end, the Statistical

Full Coverage (SFC) method, is described. Finally, in chapter 5, a computer simulation

comparison of the detection schemes and their combinations is presented. Chapter 6

provides the conclusions and overall observations. Appendix A is an overview and user

guide to the source code used to generate the computer simulations. An attached CD



1 Introduction 6

contains all the C++ source code.
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Chapter 2

System, Mathematical

Preliminaries, and Detection

Methods

2.1 System Assumptions

We consider a multiple-antenna wireless communication system with NTX transmit

antennas and NRX receive antennas. For simplicity, several assumptions are made to

focus attention on the proposed decoding schemes rather than on the model.

We assume that channel training allows the receiver but not the transmitter to

know all of the effective channels between each transmit and receive antenna. More-

over, we assume sufficient antenna spacing, narrowband transmission, and flat fading

in both frequency and time so that the channel matrix, H̃ ∈ CNRX×NTX , is comprised

of independent circular complex Gaussian 0-mean variance-1 random variables. We

also assume that the transmitted vector, ũ ∈ CNTX , is a vector of squared M -QAM

complex symbols. The symbols have average power one and M is the number con-
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stellation points. The information bits in each transmitted symbol follow a Gray code

assignment. The noise vector, ñ ∈ CNRX , is assumed to be made up of independent

circular complex additive white gaussian noise (AWGN) of 0-mean and variance-1

random variables.

We let ρ be the average SNR at each receive antenna. Each transmitted symbol is

multiplied by
√

ρ
NTX

since the signal power at each receive antenna is the sum of the

transmit power from all NTX transmit antennas.

2.2 System Framework

Since both the SD and its lower-complexity detection variant, the SE variant of the

SD (SE/SD) [13,14], as well as an important aspect of the two proposed front-ends,

the Subspace Matched Filter (SMF) [21,22], are presented in the literature using a

real system model we transform the complex system model into a real system model.

Furthermore, the linearity of the LD codes in terms of the transmitted real symbols

(taking the real and imaginary components of each complex symbol), which led to

LD codes being considered in the literature using a real system model [10], is another

motivation for the adoption the real system model. In fact, nearly all publications

working in this area adopt a real system model. Our assumption of a squared M -

QAM complex constellation enables each real transmitted symbol to be split into two
√

M -PAM symbols with an identical constellation. Each real symbol is scaled so as to

have an average power of 1/2. M -PSK symbols can also be split into two real symbols

but are not considered in this work. We choose to focus instead on highly bandwidth

efficient systems requiring large M where M -PSK is less appropriate than M-QAM.

The valid symbols for four simple PAM constellations are presented in Table 2.1. The

next two subsections show how both an uncoded real and LD coded real system model
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can be obtained from the underlying complex model.

Constellation b/s/Hz distance (d) Valid real symbols of average power 1/2
PAM-2 1 2√

2
= 1.414 − 1√

2
, 1√

2

PAM-4 2 2√
10

= 0.632 − 3√
10

, − 1√
10

, 1√
10

, 3√
10

PAM-8 3 2√
42

= 0.309 − 7√
42

, − 5√
42

, − 3√
42

, − 1√
42

, 1√
42

, 3√
42

5√
42

, 7√
42

PAM-16 4 2√
170

= 0.153 − 15√
170

, − 13√
170

, − 11√
170

, − 9√
170

, − 7√
170

,

− 5√
170

, − 3√
170

, − 1√
170

, 1√
170

, 3√
170

, 5√
170

,
7√
170

, 9√
170

, 11√
170

, 13√
170

, 15√
170

Table 2.1 Four simple PAM constellations with E[|ui|2] = 1/2.

2.2.1 Uncoded Framework

The uncoded framework is the framework for V-BLAST transmission. It is referred

to as uncoded transmission since there is no coding method introducing either spatial

or temporal diversity.

The baseband equivalent model of the received uncoded complex signal vector,

r̃ ∈ CNRX , at the sampling instant, which is assumed to be synchronous, can be

represented as [10]:

r̃ =
√

ρ
NTX

H̃ũ + ñ. (2.1)

The decoder processes r̃ to determine ũ, the transmitted vector of squared M -QAM

symbols. A block diagram of the uncoded system is shown below.

The transmission rate, Ru, of an uncoded system depends on the number of symbols

sent in one channel-use, NTX , and the size of the constellation, M . The uncoded rate

in bits/channel-use is [10]:

Ru = NTX log2 M. (2.2)

For the reasons listed above we choose to express the complex system model as the
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... ...
MIMO

Receiver

MIMO

Modulator

Detector

Information
symbol
vector

generator

ũ

H̃

ñ additive noise

r̃

Fig. 2.1 Uncoded system block diagram

real system model:

r =

√

ρ

NTX

Hu + n. (2.3)

Where r =







Re{r̃}

Im{r̃}






, u =







Re{ũ}

Im{ũ}






, n =







Re{ñ}

Im{ñ}






and

H =







Re{H̃} −Im{H̃}

Im{H̃} Re{H̃}






(2.4)

When transmitting uncoded symbols it is assumed that NTX ≤ NRX .

2.2.2 Linear Dispersion (LD) Coded Framework

LD codes are STBCs that improve on the performance of uncoded transmission by

introducing diversity. Defining L as the block length of the code, LD codes require
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that the channel be constant for L channel-uses.

The transmission rate, Rc, of a LD coded system depends on the number of M-

QAM symbols sent, Q, L, and the size of the constellation, M . Any comparisons

between coded and uncoded systems will be done at equal transmission rates. The

coded rate in bits/channel-use is [10]:

Rc = Q
L

log2 M. (2.5)

If the channel is constant for at least L channel-uses then:

r̃t =
√

ρ
NTX

H̃s̃t + ñt, t = 1, . . . , L (2.6)

where s̃t ∈ CNTX×1 represents the coded vector transmitted at time t ∈ [1, L]. A block

diagram of the LD coded system can be seen below.

LD Space−
Time  Block
Encoder ... ...

MIMO

Receiver

vector
symbol

Information

generator
MIMO

Modulator

Decoder

ũ s̃t

H̃

ñ additive noise

r̃

Fig. 2.2 LD coded system block diagram
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We define the following three matrices:

R̃ =

[

r̃1 r̃2 . . . r̃L

]T

, (2.7)

S̃ =

[

s̃1 s̃2 . . . s̃L

]T

, (2.8)

Ñ =

[

ñ1 ñ2 . . . ñL

]T

. (2.9)

We can then write the system equation in terms of these matrices:

R̃ =
√

ρ
NTX

S̃H̃T + Ñ. (2.10)

LD codes are of the form:

S̃ =

Q
∑

q=1

(αqAq + jβqBq) (2.11)

where S̃ ∈ CL×NTX is the codeword matrix with αq and βq being real information scalars

such that ũq = αq + jβq, q ∈ [1, Q]. The two sets of matrices: Aq, Bq ∈ CL×NTX ,

q ∈ [1, Q], completely describe the code. Equation (2.11) shows the linearity of the

code matrix in the real transmitted symbols.

Expressing the LD coded system framework in terms of their real and imaginary

components yields:

R̃R + jR̃I =

√

ρ

NTX

Q
∑

q=1

[αq(Aq,R + jAq,I) + jβq(Bq,R + jBq,I)] (H̃
T
R + jH̃T

I )

+ÑR + jÑI (2.12)

with R̃R = Re(R̃), R̃I = Im(R̃), Aq,R = Re(Aq), Aq,I = Im(Aq), Bq,R = Re(Bq),
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Bq,I = Im(Bq), H̃T
R = Re(H̃T), H̃T

I = Im(H̃T), ÑR = Re(Ñ), ÑI = Im(Ñ).

We define the following two matrices.

Aq =







Aq,R −Aq,I

Aq,I Aq,R






, Bq =







−Bq,I −Bq,R

Bq,R −Bq,I






. (2.13)

Likewise, we define the cth column of R̃R, R̃I, H̃T
R, H̃T

I , ÑR, and ÑI, respectively, as

rc,R, rc,I, hc,R, hc,I, nc,R, and nc,I. We define:

hc =







hc,R

hc,I






. (2.14)

Next, expressing the received matrix as a vector and expressing the real information

scalars as a vector we can translate (2.10) to the following form [10]:

























r1,R

r1,I

...

rNRX,R

rNRX,I

























=

√

ρ

NTX













A1h1 B1h1 . . . BQh1

...
... . . .

...

ANhN BNhN . . . BQhN





































α1

β1

...

αQ

βQ

























+

























n1,R

n1,I

...

nNRX,R

nNRX,I

























r =

√

ρ

NTX

Gu + n. (2.15)

Therefore G ∈ C2NRXL×2Q for the LD coded system acts like H for the uncoded

system. Under the assumption that the decoder has perfect knowledge of H and the

LD code (and thus all the Aq, Bq ∈ CL×NTX , q ∈ [1, Q] matrices) then it will also

know G. Furthermore, the LD coded form allows for any combination of NTX and

NRX . It is only required that Q ≤ NRXL so that the system is consistent.



2 System, Mathematical Preliminaries, and Detection Methods 14

2.3 Mathematical Preliminaries

2.3.1 Projections

The manipulation of projections and statistics of projections are concepts used to

develop the two proposed SD front-ends. The channel matrix H = [h1 . . .hNTX
] has a

corresponding subspace 〈H〉, called the signal subspace, which is the span of {hi}NTX
i=1

[22]. Letting the columns of Q be an orthonormal basis of the 〈H〉 subspace then

PH = QQT (2.16)

is the unique orthogonal projection matrix onto the 〈H〉 subspace [23]. Taking the

QR factorization of H = QR and substituting Q = HR−1 into (2.16) we obtain:

PH = HR−1(HR−1)T

= HR−1(RT )−1HT

= H(RTR)−1HT , (2.17)

HTH = (QR)TQR

= RTQTQR

= RTR. (2.18)

Therefore, the unique orthogonal projection matrix onto the 〈H〉 subspace can be

found in terms of its non-orthonormal component vectors.

PH = H(HTH)−1HT . (2.19)
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In order to project a point, such as the received vector, r, onto the 〈H〉 subspace

it is pre-multiplied by the orthogonal projection matrix, PHr. The projection matrix

for the subspace orthogonal to the 〈H〉 subspace is [22]:

P⊥
H = I − PH. (2.20)

Other important projection properties which follow directly include [22]:

PH = PT
H = P2

H, (2.21)

PHP⊥
H = 0. (2.22)

The channel matrix, H, can be spliced into Si, defined as H without the ith column,

and hi, the ith column of H.

vi = P⊥
Si
hi. (2.23)

〈vi〉 represents the subspace of hi orthogonal to the Si subspace. The PH projection

matrix can then be decomposed between these subspaces.

PH = Pvi
+ PSi

. (2.24)

The PH projection matrix can also be decomposed into the oblique projections

matrices EhiSi
and ESihi

that have range spaces 〈hi〉 and 〈Si〉 respectively and null

spaces 〈Si〉 and 〈hi〉 respectively [21].

ESihi
= Si(S

T
i P⊥

hi
Si)

−1ST
i P⊥

hi
. (2.25)

EhiSi
= hi(h

T
i P⊥

Si
hi)

−1hT
i P⊥

Si
. (2.26)
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PH = EhiSi
+ ESihi

. (2.27)

Figure 2.3 shows the relationship between two decompositions of the 〈H〉 subspace.

y is a vector that is being projected onto this subspace.

〈vi〉 = 〈P⊥
Si
hi〉

〈hi〉

〈Si〉

PHy = PSihi
y

Pvi
y

EhiSi
y

ESihi
y

PSi
y

Fig. 2.3 Decompositions of the 〈H〉 subspace

If x has a N [0, I] distribution and P is a rank r projection matrix then the distri-

bution of y = Px is N [0,P] [22]. This means that the quadratic form yTy = xTPx

has a central χ2
r distribution. If x has a N [m, I] distribution then the quadratic form,

yTy, has a noncentral χ2
r distribution with noncentrality parameter λ2 = mTm [21].

2.3.2 Maximum-Likelihood Detection

The ML detected vector uML is the vector which maximizes the likelihood function

fr(r|us) when us = uML [24]. Here us can be any vector of symbols from a given

constellation. The set of all symbol vectors is called S.

uML = arg max
us∈S

fr(r|us). (2.28)

When the channel is fixed, the randomness in the received vector, r, comes from
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the Gaussian noise vector so that the conditional probability density function (pdf),

fr(r|us), has a jointly Gaussian distribution. Assuming the noise elements have vari-

ance N0/2 this distribution is [24]:

fr(r|us) = 1
(πN0)NRX/2 exp{− 1

N0
‖r −

√

ρ
NTX

Hus‖2
2}. (2.29)

To maximize fr(r|us) over the set of all possible symbol vectors, us ∈ S, it is neces-

sary to minimize ‖r−
√

ρ
NTX

Hus‖2
2 which is equivalent to minimizing ‖r−

√

ρ
NTX

Hus‖2.

Then, independent of the noise variance, the ML decision rule is to find the symbol

vector us that is closest to the received vector in the euclidean sense.

uML = arg min
us∈S

‖r −
√

ρ

NTX

Hus‖2. (2.30)

The complexity of ML detection, using an exhaustive search over S, is exponential

both in the size of the signal constellation (M), and in the number columns of H, the

number of transmit antennas (NTX). The exhaustive search complexity is O(MNTX ).

2.3.3 Subspace Matched Filtering

SMF is a more general version of the well known Matched Filter. The SMF is able to

deal with multirank (subspace) interference and multirank signals [21]. In this work

we will only consider rank-1 signals but the SMF’s ability to deal with multirank

interference will be important.

Suppose we have an N-dimensional measurement vector, y, which is composed as

follows:

y = xλ + Sφ + n. (2.31)
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The rank-1 signal is xλ and the multirank interference is Sφ. It is also assumed, in

this detection problem, that S and x are known but that λ and φ are not known. The

unknown φ is dealt with as an unknown parameter. Our detection goal on measuring

y is to decide whether λ = 0, the null hypothesis (H0), or λ 6= 0, the alternative

hypothesis (H1). The dimensions of the various quantities are:

y ∈ RN×1 x ∈ RN×1

S ∈ RN×p φ ∈ Rp×1.

Furthermore, it is assumed that p < N and the noise vector, n, is assumed to have a

N [0, σ2I] distribution. The detection problem tests between the following two proba-

bility distributions of y:

H0 : y : N [Sφ, σ2I] vs

H1 : y : N [xλ + Sφ, σ2I] .
(2.32)

The subspaces 〈x〉 and 〈S〉 are not assumed to be orthogonal but are assumed to be

linearly independent. The pdf of y is:

f(y; λ, φ, σ2) = (2πσ2)−N/2 exp{− 1
2σ2‖y − xλ − Sφ‖2

2}. (2.33)

The likelihood function of y is:

l(λ, φ, σ2;y) = (2πσ2)−N/2 exp{− 1
2σ2‖y − xλ − Sφ‖2

2}. (2.34)

For the two sets of values (λ1, φ1, σ
2) and (λ0, φ0, σ

2), under hypothesis H1 and H0,
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the likelihood ratio for this problem is:

Λ(y) =
l(λ1, φ1, σ

2;y)

l(λ0, φ0, σ2;y)
(2.35)

=
(2πσ2)−N/2 exp{− 1

2σ2‖y − xλ1 − Sφ1‖2
2}

(2πσ2)−N/2 exp{− 1
2σ2‖y − Sφ0‖2

2}

= exp{ 1

2σ2
‖y − Sφ0‖2

2 −
1

2σ2
‖y − xλ1 − Sφ1‖2

2}. (2.36)

SMF uses the likelihood ratio to decide between H0 and H1. A threshold, t, is chosen,

and H0 is selected if Λ(y) < t and H1 is selected if Λ(y) > t.

2.4 Zero-Forcing (ZF) Detection

The ZF detector is a low complexity linear detector with sub-ML performance. In ZF

detection the received vector, r, is first pre-multiplied by a ZF matrix, FZF.

FZF = (HTH)−1HT. (2.37)

The ZF matrix is a linear transformation from an NRX-dimensional vector, r, to an

NTX-dimensional vector, ̟. The ZF matrix is designed to completely cancel the effect

of the channel, H, for a noiseless system.

FZFH = (HTH)−1HTH

= I. (2.38)

Although the channel, H, is random, each realization is assumed to be known by

the detector. The received symbol SNR,
√

ρ
NTX

, is also assumed to be known by the
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detector.

̟ = FZFr (2.39)

=

√

ρ

NTX

(HTH)−1HTHu + (HTH)−1HTn

=

√

ρ

NTX

u + (HTH)−1HTn. (2.40)

A decision is made for each component of ̟; and this vector is called û.

ûi = arg min
ũi

‖ ̟i
√

ρ
NTX

− ũi‖2. (2.41)

2.4.1 Noise Colouring

Pre-multiplying r by the ZF matrix, FZF, causes noise colouring. The covariance

matrix of the additive noise vector is transformed from I to (HHH)−1 [25].

E{(HTH)−1HTn} = 0. (2.42)

E{[(HTH)−1HTn][(HTH)−1HTn]T} = (HTH)−1HTE{nnT}H(HTH)−T

= (HTH)−1HTIH(HTH)−1

= (HTH)−1HTH(HTH)−1

= (HTH)−1. (2.43)

This noise colouring causes a degradation in performance in ZF detection with respect

to ML detection. Following multiplication by the ZF matrix the pdf of the coloured

noise, (HTH)−1HTn, no longer has the spherical pdf geometry of the undistorted

noise, n, used by the ML detector [25]. The symbol decision regions are designed for
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white noise and so the amplified, coloured, noise leads to incorrect decisions and a

higher probability of error.

2.4.2 Analysis of the ith output of the ZF Detector (ûi)

The following matrix identity is useful in the analysis of ûi [26]:

[FZFr]i =
hT

i P⊥
Si
r

‖vi‖2
2

. (2.44)

Therefore, in ZF detection, the following decision is made for the ith symbol where U

is the set of all symbols in the constellation.

ûi = arg min
ũi∈U

‖ [FZFr]i
√

ρ
NTX

− ũi‖2
2

= arg min
ũi∈U

‖ hT
i P⊥

Si
r

√

ρ
NTX

‖vi‖2
2

− ũi‖2
2

= arg min
ũi∈U

‖
hT

i P⊥
Si

(
√

ρ
NTX

Hu + n)
√

ρ
NTX

vT
i vi

− ũi‖2
2

= arg min
ũi∈U

‖

√

ρ
NTX

vT
i vi

√

ρ
NTX

vT
i vi

ui − ũi +
(P⊥

Si
hi)

Tn
√

ρ
NTX

vT
i vi

‖2
2

= arg min
ũi∈U

‖ui − ũi +
(vT

i vi)
−1vT

i n
√

ρ
NTX

‖2
2. (2.45)

Since vi is a known vector we can also say that:

ûi = arg min
ũi∈U

(‖ui − ũi +
(vT

i vi)
−1vT

i n
√

ρ
NTX

‖2
2 × ‖

√

ρ

NTX

vi‖2
2)

= arg min
ũi∈U

‖
√

ρ

NTX

vi(ui − ũi) + Pvi
n‖2

2. (2.46)
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Equation (2.46) shows the relation between the ith output of the ZF detector, ûi, and

the vi subspace. This relation shows that the two factors that lead to a ZF detection

error at the ith symbol are a large Pvi
n and a small ‖vi‖2.

2.5 Sphere Decoder (SD)

The algorithm underlying the SD was discovered by Pohst [27] and then simplified

and applied for communication systems to become known as the SD by Viterbo and

Boustros [11]. The Schnorr-Euchner (SE) algorithm [15], a lower complexity variant of

the SD, was first presented in a communications system context by Agrell et. al. [13]

and by Chan and Lee [14]. The basic idea behind the SD, regardless of the variant,

is the same. Instead of exhaustively searching through all symbol vectors only those

found within a spheroid, of given radius θ, centered at the equalized received vector,

̟, are searched. This strategy is able to lower complexity because it uses extra

information, an approximation of the solution, that is not used by the exhaustive

search detector. Similar to the exhaustive search detector, the SD solves the least

square minimization:

min
ū∈G

‖r −
√

ρ

NTX

Hū‖2
2 = min

ū∈G
‖
√

ρ

NTX

H(u − ū) + n‖2
2. (2.47)

We let G be the set of symbol vectors in the spheroid. While still producing the ML

solution the SD has much less complexity than the exhaustive search since it only

considers a small subset of the symbol vectors.

We begin the SD search process by pre-multiplying r by FZF. This is done to find

an estimate of the solution which will be used as the center of the sphere.

̟ = FZFr. (2.48)
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Although the calculation of ̟ causes noise colouring this doesn’t effect the least square

calculation since the SD still uses r in equation (2.59). We define the vector k as:

k = ̟ −
√

ρ
NTX

ū. (2.49)

The SD detector uses ̟ as the center of the spheroid.

min
ū∈G

‖Hk‖2
2 = min

ū∈G
‖H(̟ −

√

ρ

NTX

ū)‖2
2 (2.50)

= min
ū∈G

‖H(

√

ρ

NTX

u + (HTH)−1HTn −
√

ρ

NTX

ū)‖2
2

= min
ū∈G

‖
√

ρ

NTX

H(u − ū) + PHn‖2
2. (2.51)

The minimization of (2.47) and (2.51) both achieve the same result and so it is valid

to use ̟ as the center of the spheroid, in spite of the introduced noise colouring. Both

these equations achieve the same result because equation (2.51) only excludes noise

orthogonal the subspace over which the minimization occurs.

Now we can work out a method for finding those lattice points that lie within the

search spheroid.

‖Hk‖2
2 = kTHTHk ≤ θ2. (2.52)

Performing a cholesky factorization of HTH = RTR where R is an upper triangular

matrix yields:

kTRTRk = ‖Rk‖2
2 = ‖a‖2

2 ≤ θ2. (2.53)

We next assume that every element of a, except the last one, is zero, making it possible

to find a range of ūNTX
.

rNTXNTX
(̟NTX

−
√

ρ
NTX

ūNTX
) ≤ ‖θ‖2 (2.54)
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̟NTX
√

ρ
NTX

+ θ
√

ρ
NTX

rNTXNTX

≥ ūNTX
≥ ̟NTX

√

ρ
NTX

− θ
√

ρ
NTX

rNTXNTX

. (2.55)

This inequality gives the range of ūNTX
so that ū remains in the spheroid. The order

in which the symbols in the range are considered is an important distinction between

the Viterbo-Boustros algorithm [11], implementations of which we refer to as the

SD, and the lower complexity Schnorr-Euchner algorithm [15]. The Viterbo-Boustros

algorithm considers the symbols in the range ordered from smallest to largest. The

main advantage of using this symbol ordering is its simplicity.

To find the range of ūNTX−1 all elements of a except the last two are assumed to

be zero. This range is found for each symbol, ūNTX
, in the range defined by equation

(2.55). This allows for the assumption, for the purposes of finding a range of ūNTX−1,

that ūNTX
is known.

(rNTX−1 NTX−1kNTX−1 + rNTX−1 NTX
kNTX

)2 + (rNTXNTX
kNTX

)2 ≤ θ2

rNTX−1 NTX−1kNTX−1 + rNTX−1 NTX
kNTX

≤ ‖θ2 − (rNTXNTX
kNTX

)2‖2 = g

̟NTX−1
√

ρ
NTX

+
g−rNTXNTX

kNTX
√

ρ
NTX

rNTX−1 NTX−1

≥ ūNTX−1 ≥ ̟NTX−1
√

ρ
NTX

− g−rNTXNTX
kNTX

√

ρ
NTX

rNTX−1 NTX−1

(2.56)

kNTX
= ̟NTX

−
√

ρ
NTX

ūNTX
. (2.57)

This is how the range of ūNTX−1 is calculated for one particular value of ūNTX
. In this

way, a search tree is built until a range for the first element, ū1, is found.

The range for the ith element of ū, ūi, is found by assuming that all elements of a

prior to the ith element are zero and all elements after the ith element are known.

̟i+
∑NTX

j=i+1
rijkj

√

ρ
NTX

+
θ2−

∑NTX
j=i+1

a2
j

√

ρ
NTX

ri i
≥ ūi ≥

̟i+
∑NTX

j=i+1
rijkj

√

ρ
NTX

− θ2−
∑NTX

j=i+1
a2

j
√

ρ
NTX

ri i
. (2.58)
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When a symbol vector is found within the spheroid, its distance from r is calculated.

‖r −
√

ρ
NTX

Hū‖2
2. (2.59)

2.5.1 Complexity and Search Tree Representation of the SD

The complexity of SD is defined as the average number of loops required to complete

the SD algorithm. During each loop a range of symbols is calculated and this represents

a node visitation when the SD is thought of as a search tree. An example of a SD

search tree realization is shown in figure 2.4 below. The bottom node in the tree is the

search starting point when a range of ūNTX
is determined. The nodes in the first level

up from the bottom represent the possible values of ūNTX
. In this example there are

three possible values of ūNTX
: {−1, 0, 1}. When ūNTX

= −1 the only possible value of

ūNTX−1 is −1. Likewise, when ūNTX
= 0 there are no possible values of ūNTX−1 and

when ūNTX
= 1 the two possible values of ūNTX−1 are {2, 3}. In this example the SD
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ū1

Fig. 2.4 Example of SD as a search tree

finds only one valid lattice point ū = (ū1, ūNTX−1, ūNTX
)T = (0, 2, 1)T in the spheroid

but there are 7 node visitations. The simulations will measure the complexity of any

SD variant as the average number nodes visited during the search process.
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2.5.2 QR Factorization with the Householder Transform (HT)

The SD requires a Cholesky factorization of the Gram matrix, GH, of the channel

matrix, H. It has been observed, however, that calculating the Gram matrix causes a

loss in precision [28]. One method of performing the Cholesky factorization without

having to calculate the Gram matrix is with a QR factorization of H. Then, a Cholesky

factorization of the Gram matrix is RTR, where R is the upper triangular matrix

obtained from the QR factorization of H.

GH = HTH (2.60)

= (QR)TQR

= RTQTQR

= RTR. (2.61)

A stable way to perform the QR factorization of H is by repeated application of

the Householder Transform (HT) [28]. The HT allows for the annihilation to 0 of

several entries in a column at the same time.

The HT, expressed as a matrix, Θ, pre-multiplies a given vector, say x, and the

result is the first basis vector of the same length, αe0, with e0 =

[

1 0 . . . 0

]T

.

Therefore α = ‖x‖2 and

Θx = αe0. (2.62)

We show that Θ = I−Pg by considering an isosceles triangle with equal length sides

x and αe0 and base g = x − αe0.
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x αe0

g = x − αe0

Fig. 2.5 Isosceles triangle used to derive the Householder Transform

αe0 = x − 2Pgx

= (I − Pg)x

= Θx. (2.63)

We begin the QR factorization process by finding the HT for the first column of

H, h1, which we call Θ1. Then we create Θ2 from the second column of the product

Θ1H without the first element. In this way we annihilate to 0 all elements below the

diagonal of H.

R = ΘNTX
. . .Θ2Θ1H. (2.64)

2.5.3 Practical Selection of the SD Radius

Of great practical importance to the SD is the selection of the spheroid radius. In the

original SD paper [11] no method of radius selection is given but it is suggested that

the radius can be dynamically adjusted. For instance, if no points are found within an

initially selected radius then this radius should be increased and the search repeated
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until such time as at least one symbol vector is discovered within the spheroid.

When the Schnorr-Euchner algorithm is incorporated into the SD [13,14,29] the

computational complexity of this modified SD is seen to be less dependant on the

chosen radius [14]. Therefore, for ease of comparison, all of the SD implementations

in this work will use the same static radius selection method. A practical benefit of

this method is that at least one symbol vector is always located within it’s selected

radius.

All of the implemented SDs pick the spheroid radius, θ, as follows, using the output

of the ZF detector.

θ2 = ‖H(FZFr −
√

ρ

NTX

û)‖2
2

= ‖R(̟ −
√

ρ

NTX

û)‖2
2. (2.65)

This ensures that at least one symbol vector, û, is in the spheroid of radius θ.

2.5.4 Schnorr-Euchner Variant of the SD (SE/SD)

The SE/SD has lower complexity, as defined in section 2.5.1, than the SD. The SE/SD

begins searching for symbol vectors at the center of the spheroid rather than at the

edge, as is done in the original SD [11]. This altered search ordering allows the ML

solution to be found more quickly since the ML solution is most likely to be found

closest to the center of spheroid [14]. Except for this altered search ordering, SE/SD

and SD algorithms are the same, and both have the same ML performance.

The range of the ith symbol in the symbol vector, ūi, contained in the spheroid

of radius θ, is given by equation (2.58). SE/SD sorts the symbols in this range in

ascending order of the following metric, where y ∈ H and H is the set of symbols in
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the range of the ith symbol.

|y − ̟i+
∑NTX

j=i+1
rijkj

√

ρ
NTX

|2. (2.66)

The following computer simulation confirms the lower complexity of the SE/SD

compared to the SD. The relative lower complexity of the SE/SD is seen to decrease
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Fig. 2.6 Complexity comparison between SD and SE/SD: uncoded 16-
QAM NTX = 5 and NRX = 7

with increasing SNR. This reducing complexity advantage occurs because at higher

SNR fewer symbol vectors are found in the spheroid and therefore the order in which

they are searched becomes less important.
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2.6 LD Code for Multiple Antennas

The LD code used in the computer simulations was discovered in the original LD

paper by Hassibi and Hochwald [10]. The code is designed for NTX = 2, NRX = 2,

and a block length, L, of 2 channel-uses. A QPSK symbol constellation is used in

conjunction with this code.

The simulations will compare the LD coded transmission with uncoded transmis-

sion at an equal rate. In uncoded transmission four symbols are transmitted from two

transmit antennas in two channel uses which, assuming QPSK modulation, results in

a rate, Ru, of 4. To set the LD coded transmission rate, Rc, equal to the uncoded

rate, Ru, we choose Q = 4, and also transmit 4 symbols during each block length.

The LD code can be completely described by two sets of matrices: Aq, Bq ∈

CL×NTX , q ∈ [1, Q] as shown in equation (2.11). For the code used in the simulations

these matrices are:

A1 = B1 =







1 0

0 1






, (2.67)

A2 = B2 =







0 1

1 0






, (2.68)

A3 = B3 =







1 0

0 −1






, (2.69)

and

A4 = B4 =







0 1

−1 0






. (2.70)



2 System, Mathematical Preliminaries, and Detection Methods 31

2.7 Computer Simulations

The C++ source code for the programs that generated the computer simulations

included as part of this thesis can be found in an attached CD. Appendix A is a guide

explaining how to use these C++ programs as well as their capabilities and limitations.

Of primary importance, however, is an understanding of the derived graphical

results. Three types of results are presented: Bit Error Rate (BER) performance,

Symbol Error Rate (SER) performance, and decoder complexity. To ensure accurate

results a minimum of 100 errors was required for each decoding method at each SNR.

The simulations also ensure a minimum of 100 000 channel realizations.

The decoder complexity from the simulations is defined as the SD complexity that

was described in Section 2.5.1. The SD implemented in these simulations is based on

the flowchart from [11]. The SE/SD implemented in these simulations is based on the

flowchart from [14].
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Chapter 3

Statistical Partial Coverage (SPC)

Front-End

A detector combining the SPC front-end with the SD (SPC-SD) reduces computational

complexity compared to the standalone SD. The SPC-SD’s lower computational com-

plexity as compared to the SD is a result of individually pre-detecting a percentage of

the symbols in each symbol vector so that fewer symbols are left to be jointly detected

by the SD. The performance of the SPC-SD detector can approach the performance

of the SD detector because the SPC front-end is designed to only pre-detect symbols

which have a very high probability of being correct. Correct pre-detection ensures

that cancelation of these pre-detected symbols does not cause further distortion (from

error propagation) and allows for joint detection of all the transmitted symbols.

The steps in the SPC front-end are:

1. Obtain the output of the zero-forcing detector (û from Section 2.4).

2. Obtain the output of a decision feedback step.

3. For each symbol in the symbol vector:
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(a) Calculate the Generalized Likelihood Ratio (GLR), Li, as to whether ui =

ûi.

(b) Compute a GLR threshold (κi) that ensures a small probability that ui 6= ûi

if Li < κi.

(c) Pre-detect the ith symbol in the symbol vector. If Li < κi we decide that

ui = ûi.

4. Cancel the pre-detected symbols.

Section 3.2.3 describes how the error propagation associated with SPC front-end

can be made as unlikely as desired by proper choice of the parameter U .

3.1 Decision Feedback Step

The SPC front-end begins by calculating û, the output of the zero-forcing detector,

and then by calculating w, the output of a decision feedback step.

w = r −
√

ρ

NTX

Hû

=

√

ρ

NTX

H(u − û) + n (3.1)

= He + n. (3.2)

e =
√

ρ
NTX

(u − û). (3.3)

Each element of e is either zero or an integer multiple of
√

ρ
NTX

d. d is the minimum

distance between symbols in the given constellation. If û = u then w = n and the

vector w will only be made up of noise. The purpose of the decision feedback step is

to obtain w, a vector that either contains only noise or a signal plus noise (if û 6= u),

in order to use SMF [21].
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3.2 Individual Pre-Detection

In order to individually pre-detect the ith symbol in the symbol vector we splice the

channel matrix, H, into Si, defined as H without the ith column, and hi. Similarly,

we slice e into its ith element, ei, and φi, defined as e without the ith element. The

values of ei and φi are treated as unknown parameters.

w = hiei + Siφi + n. (3.4)

The pre-detection problem is to test between the following two probability distribu-

tions of w [21].

H0 : ûi = ui → ei = 0 → w : N [Siφi, I] vs

H1 : ûi 6= ui → ei 6= 0 → w : N [hiei + Siφi, I] .
(3.5)

If, for the ith symbol, the SPC front-end chooses the hypothesis H0 then ûi becomes

the pre-detected symbol otherwise the ith symbol is not pre-detected and is left to be

detected by the SD. The hypothesis test is done using a Generalized Likelihood Ratio

(GLR), employing maximum likelihood estimates of the unknown parameters.

3.2.1 Maximum Likelihood Estimates (MLE)

The GLR requires the MLE of the unknown parameters in the likelihood functions.

We use the convention where the MLE of a variable will have the same variable name

with the addition of a hat. The particular hypothesis being assumed to be true will

be indicated by a superscript.

The MLE of φi under H1, φ̂1
i , can be obtained using the oblique projection matrix
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ESihi
[21].

Siφ̂
1
i = ESihi

w

φ̂1
i = (ST

i P⊥
hi
Si)

−1ST
i P⊥

hi
w

= φi + (ST
i P⊥

hi
Si)

−1ST
i P⊥

hi
n. (3.6)

An orthogonal projection matrix, PSi
= Si(S

T
i Si)

−1ST
i , is used to obtain φ̂0

i .

Siφ̂
0
i = PSi

w

φ̂0
i = (ST

i Si)
−1ST

i w

= φi + (ST
i Si)

−1ST
i n. (3.7)

The MLE of ei under H1, ê1
i , can be obtained using the oblique projection matrix

EhiSi
[21].

hiê
1
i = EhiSi

w

ê1
i = (hT

i P⊥
Si
hi)

−1hT
i P⊥

Si
w

= ei + (hT
i P⊥

Si
hi)

−1hT
i P⊥

Si
n. (3.8)

The MLE of ei under H0, ê0
i = 0.

3.2.2 Generalized Likelihood Ratio (GLR)

The probability density function of the multivariate normal random vector w is:

f(w; ei, φi) = (2π)−NTX exp{−1
2
‖w − hiei − Siφi‖2

2}. (3.9)
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The likelihood function for this distribution is a function of (ei, φi) with parameter w

[21].

l(ei, φi;w) = (2π)−NTX exp{−1
2
‖w − hiei − Siφi‖2

2}. (3.10)

The likelihood ratio, Λi10, for any two values (ei1, φi1) and (ei0, φi0) is now:

Λi10(w) =
l(e1

i ,φ1

i
;w)

l(e0
i ,φ0

i
;w)

. (3.11)

Replacing the values φi and ei by the their MLE under H1 and H0 we obtain the GLR.

Λi10(w) =
l(ê1

i , φ̂
1
i ;w)

l(ê0
i , φ̂

0
i ;w)

=
(2π)−NTX exp{−1

2
‖w − hiê

1
i − Siφ̂

1
i ‖2

2}
(2π)−NTX exp{−1

2
‖w − hiê0

i − Siφ̂0
i ‖2

2}

= exp{−1

2
‖w − hiê

1
i − Siφ̂

1
i ‖2

2 +
1

2
‖w − hiê

0
i − Siφ̂

0
i ‖2

2}

= exp{1

2
‖w − PSi

w‖2
2 −

1

2
‖w − EhiSi

w − ESihi
w‖2

2}

= exp{1

2
‖ [I − PSi

]w‖2
2 −

1

2
‖ [I − (EhiSi

+ ESihi
)]w‖2

2}.

Combining EhiSi
and ESihi

as described by equation (2.27) in section 2.3.1.

Λi10(w) = exp{1

2
‖P⊥

Si
w‖2

2 −
1

2
‖ [I − PhiSi

]w‖2
2}

= exp{1

2
‖P⊥

Si
w‖2

2 −
1

2
‖P⊥

hiSi
w‖2

2}. (3.12)
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The GLR can be simplified further by replacing it by a scaled logarithmic GLR [21].

Li(w) = 2 ln Λi10(w)

= ‖P⊥
Si
w‖2

2 − ‖P⊥
hiSi

w‖2
2

= wTP⊥
Si
w − wTP⊥

Sihi
w

= wT(P⊥
Si
− P⊥

Sihi
)w

= wT(I − PSi
− (I − PSihi

))w

= wT(−PSi
+ PSihi

)w. (3.13)

Using the projection decomposition described by equation (2.24) to decompose PSihi
:

Li(w) = wT(−PSi
+ PSi

+ PP⊥

Si
hi

)w

= wTPP⊥

Si
hi
w

= wTPvi
w

= ‖Pvi
w‖2

2. (3.14)

The vector vi = P⊥
Si
hi represents the subspace of hi orthogonal to the Si subspace.

This result makes intuitive sense because by projecting w onto the vi subspace the

scaled GLR is not influenced by ZF detection errors in any non-ith symbols. Also, as

was shown in section 2.4.2 ZF detection errors are strongly and uniquely influenced

by the realization of vi.

The distribution of Li(w) is chi-squared with nonconcentrality parameter λ2
i and

one degree of freedom [21].

Li(w) : χ2
1(λ

2
i ). (3.15)

λ2
i = e2

i h
T
i P⊥

Si
hi = e2

i ‖vi‖2
2. (3.16)
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3.2.3 SPC Front-End Individual Symbol Pre-Detection

In this case, instead of using Li(w) = ‖Pvi
w‖2

2 the SPC front-end uses ‖Pvi
w‖2 in

the hypothesis test. ‖Pvi
w‖2 contains the same information as ‖Pvi

w‖2
2 but avoids

one squaring operation. The decision threshold for the ith symbol, κi, is calculated for

each symbol in the symbol vector.

‖Pvi
w‖2

H0

<

≥

H1

κi. (3.17)

If the above hypothesis test chooses H0 then SPC pre-detection occurs and ûi is chosen

as the ith symbol output. The probability of false alarm (PF ) for the SPC front-end

is defined as:

PF = P [H1|H0]

= P [‖Pvi
w‖2 ≥ κi|H0]

= P [‖Pvi
n‖2 ≥ κi]

= 1 − P [χ1(0) < κi]. (3.18)

If PF = 1 then every time ei = 0 the SPC front-end chooses H1. However, the

SPC front-end only reduces complexity when ei = 0 and the hypothesis test chooses

H0. Choosing H0 reduces complexity because this means that the ith symbol is pre-

detected and the SD therefore has one less symbol to jointly detect. Therefore, a

smaller PF results in a larger the SPC front-end complexity reduction. The probability
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of detection (PD) for the SPC front-end is defined as:

PD = P [H1|H1]

= P [‖Pvi
w‖2 ≥ κi|H1]

= P [χ1(λ
2
i ) ≥ κi]

= 1 − P [χ1(λ
2
i ) < κi]. (3.19)

If PD = 1 then every time ei 6= 0 the SPC front-end chooses H1. 1 − PD is therefore

the probability that the SPC front-end makes a pre-detection error. It is these pre-

detection errors which cause the SPC-SD detector to have worse that ML performance.

The key to ensuring that the SPC-SD detector has close to ML performance is to

find the largest κi than maintains a PD close to one. A larger κi reduces PF and

therefore reduces complexity. We choose the hypothesis test threshold, κi, based on

the channel realization, SNR, symbol constellation and a probabilistic measure of the

noise projected onto the vi subspace.

κi = max(‖vi‖2

√

ρ
NTX

d − U, 0). (3.20)

The logic behind this choice of κi can be seen by considering the Figure 3.1 below.

This figure shows the relationship between the noiseless value of ‖Pvi
w‖2 when ei = 0

and when ei = ±d
√

ρ
NTX

in the vi subspace. These points are equidistant with this

distance being d
√

ρ
NTX

‖vi‖2. Considering noise in the vi subspace, it can be seen that

if ‖Pvi
n‖2 ≤ U and ‖Pvi

w‖2 < κi then ei = 0. Although it is not always the case

that ‖Pvi
n‖2 ≤ U choosing a large U can ensure that this inequality is nearly always
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κid
√

ρ
NTX

‖vi‖2

ei = 0 UU

Fig. 3.1 Noiseless values of ‖Pvi
w‖2 when ei = 0 and ei = ±d

√

ρ
NTX

in

the vi subspace

satisfied.

α = P [‖Pvi
n‖2 ≤ U ]

= P [χ1(0) ≤ U ]. (3.21)

Clearly α can be made arbitrarily close to one by proper selection of U .

If, for the ith symbol, κi = 0 then PF = 1 and PD = 1 since the hypothesis test,

equation (3.17), always selects H1. When κi = 0 the SPC front-end never pre-detects

the ith symbol.

In the following analysis we assume that ‖vi‖2

√

ρ
NTX

d > U , and so κi > 0, the case

where the SPC front-end may pre-detect the ith symbol. We wish to show that the

value of κi = ‖vi‖2

√

ρ
NTX

d − U assures a PD close to 1. Letting ñ be the realization

of n we can define the event E.

E : ‖Pvi
ñ‖ ≤ U.

E : ‖Pvi
ñ‖ > U.

(3.22)
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From our definition of U we have the following two probabilities:

P [E] = α

P [E] = 1 − α.
(3.23)

The orthogonal projection Pvi
w is a random vector because it contains the random

noise vector, n, in the following way:

Pvi
w = Pvi

(hiei + Siφi + n)

= viei + Pvi
n. (3.24)

‖Pvi
w‖2 = ‖viei + Pvi

n‖2. (3.25)

In the next subsection we will prove that P [‖viei + Pvi
n‖2 ≥ κi|H1, E] = 1 and that

P [‖viei + Pvi
n‖2 ≥ κ|H1, E] ≥ 1/2 so that, employing the chain rule:

PD = P [‖Pvi
w‖2 ≥ κi|H1]

= P [‖viei + Pvi
n‖2 ≥ κi|H1, E]P [E] + P [‖viei + Pvi

n‖2 ≥ κi|H1, E]P [E]

= P [‖viei + Pvi
n‖2 ≥ κi|H1, E]α + P [‖viei + Pvi

n‖2 ≥ κi|H1, E](1 − α)

≥ [1]α + [1/2](1 − α)

≥ 1

2
+

1

2
α

≥ 1

2
+

1

2
P [χ1(0) ≤ U ]. (3.26)

This shows that the lower bound on PD can be made arbitrarily close to 1 by proper

selection of U , the SPC front-end system parameter. A larger U guarantees a tighter

lower bound on PD and thus guarantees that the SPC-SD detector will have closer to

ML performance. However, a larger U also results in less of a complexity advantage,
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as expressed in terms of PF in equation (3.18). The SPC-SD simulations will show

this U dependent tradeoff between performance and complexity.

3.2.4 Proofs for the Lower Bound on PD

For both of the proofs used to derive a lower bound on PD figure 3.1 in the preceding

section will be important.

We begin with the proof of

P1 = P [‖viei + Pvi
n‖2 ≥ κi|H1, E] = 1. (3.27)

Substituting for κi in (3.27):

P1 = P [‖viei + Pvi
n‖2 ≥ ‖vi‖2

√

ρ
NTX

d − U |H1, E]. (3.28)

Given H1, the smallest value that ei can have is: ei =
√

ρ
NTX

d, where d is the minimum

distance between constellation points.

P1 ≥ P [‖vi

√

ρ
NTX

d + Pvi
n‖2 ≥ ‖vi‖2

√

ρ
NTX

d − U |E]. (3.29)

We are given the event E : ‖Pvi
ñ‖ ≤ U . The worst case is that vi and Pvi

ñ are in

opposite directions and ‖Pvi
ñ‖ = U .

P1 ≥ P [‖vi‖2

√

ρ

NTX

d − ‖Pvi
n‖2 ≥ ‖vi‖2

√

ρ

NTX

d − U |E]

≥ P [‖vi‖2

√

ρ

NTX

d − U ≥ ‖vi‖2

√

ρ

NTX

d − U ] = 1. (3.30)

qed.
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Proceeding to the proof of

P2 = P [‖viei + Pvi
n‖2 ≥ κi|H1, E] ≥ 1/2. (3.31)

Substituting for κi in (3.31):

P2 = P [‖viei + Pvi
n‖2 ≥ ‖vi‖2

√

ρ
NTX

d − U |H1, E]. (3.32)

Given H1, the smallest value that ei can have is: ei =
√

ρ
NTX

d, where d is the minimum

distance between constellation points.

P2 ≥ P [‖vi

√

ρ
NTX

d + Pvi
n‖2 ≥ ‖vi‖2

√

ρ
NTX

d − U |E] = P3. (3.33)

The event that the random vector Pvi
n is in the same direction as the known vector

vi is called R.

P [R] = 1/2. (3.34)

Because vi is an arbitrary vector and n is a white gaussian random vector with a

spherical pdf geometry there will be a 1/2 probability that n is in the same direction

as the half sphere centered by vi.
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Employing the chain rule:

P3 = P [‖vi

√

ρ

NTX

d + Pvi
n‖2 ≥ ‖vi‖2

√

ρ

NTX

d − U |E,R]P [R] +

P [‖vi

√

ρ

NTX

d + Pvi
n‖2 ≥ ‖vi‖2

√

ρ

NTX

d − U |E,R]P [R]

= P [‖vi‖2

√

ρ

NTX

d + ‖Pvi
n‖2 ≥ ‖vi‖2

√

ρ

NTX

d − U |E]1/2 +

P [‖vi‖2

√

ρ

NTX

d − ‖Pvi
n‖2 ≥ ‖vi‖2

√

ρ

NTX

d − U |E]1/2

= [1]1/2 + [0]1/2 = 1/2. (3.35)

qed.

3.3 Canceling the Pre-Detected Symbols

The final step in the SPC front-end is to cancel from the received vector, r, those sym-

bols that have been pre-detected. By canceling the pre-detected symbols we obtain,

if there are no pre-detection errors, ML joint detection performance.

Let D be the set of indexes of the transmitted real symbol vector, u, where hy-

pothesis H0 is satisfied. The size of D, called g, depends on the system configuration

and channel realization.

D = {i ∈ [1, 2NTX ] | H0} (3.36)

= {i ∈ [1, 2NTX ] | ‖Pvi
w‖2 < κi}. (3.37)

The columns of H ∈ R2NRX×2NTX are divided between Hd ∈ R2NRX×g and Hd ∈

R2NRX×(2NTX−g) according to set D. The columns of H with indexes ∈ D are put in

Hd and the columns of H with indexes /∈ D are put in Hn. Similarly, ûd ∈ Rg, are
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the elements of û with indexes ∈ D. The result of the cancelation is called r̃.

r̃ = r −
√

ρ
NTX

Hdûd. (3.38)

Then, r̃ is pre-multiplied by a ZF matrix created from Hn.

ũ = (HT
nHn)−1HT

n r̃. (3.39)

The values of ũn and Hn can then be used as inputs to the SD that follows the SPC

front-end.

3.4 Simulation of the SPC Front-End

Computer simulations of the SPC front-end are done using the software on the attached

CD. These simulations are intended to confirm the analytical results from section 3.2

and to show the tradeoff between performance and complexity for three values of

the SPC front-end parameter U . SPC-SD denotes a decoder combining the SPC

front-end with the SD. SPC-SD simulation is done for both the uncoded and LD

coded frameworks. For each framework, both BER and SER performance curves are

presented as well as a measure of complexity. The table bellow summarizes the SPC

front-end simulations.

Uncoded Framework LD Coded Framework
SER Performance figure 3.2 figure 3.5
BER Performance figure 3.3 figure 3.6

Complexity figure 3.4 figure 3.7

Table 3.1 Summary of the SPC front-end simulations
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3.4.1 Uncoded Framework

The uncoded framework SPC front-end simulations consider a system with NTX = 5,

NRX = 7 with symbols drawn from a 16-QAM constellation. As explained in ap-

pendix A, these results are obtained by running the executable obtained by compiling

the uncodedMIMO.cpp file. The system parameters as well as the range of SNRs

can be adjusted in this program file. The SPC front-end parameter, U , influences

the performance-complexity tradeoff of the system and so simulations are done for 4

informative values: U = {2.8, 3.0, 3.2, 3.6}.
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Fig. 3.2 Uncoded SPC-SD detector SER performance: 16-QAM,
NTX = 5, NRX = 7
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In figure 3.2 it is seen that the detector achieving the best SER performance is the

standalone SD followed by SPC-SD with parameter U = 3.6, SPC-SD U = 3.2,SPC-

SD U = 3.0, SPC-SD U = 2.8, and the ZF detector. Since, among the three SPC-SD

detectors, the SPC front-end with U = 3.2 has the largest PD lower bound it has the

best performance. For those curves with small U , SPC-SD has worse diversity than

SD since not all transmitted symbols are jointly detected. The performance reduction

of SPC-SD for small U is due to error propagation from the SPC front-end.
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Fig. 3.3 Uncoded SPC-SD detector BER performance: 16-QAM,
NTX = 5, NRX = 7

The BER performance graph, figure 3.3, shows the same trends as the SER perfor-
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mance graph. The BER performance of SD and SPC-SD have near identical perfor-

mance below an SNR of 19dB for the given system. At lower SNR, SD errors dominate

additional errors introduced by the SPC front-end. At higher SNR the performance

of the SPC-SD detector is dominated by errors introduced by the SPC front-end and

the performance becomes noticeably suboptimal.
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Fig. 3.4 Uncoded SPC-SD detector complexity: 16-QAM, NTX = 5,
NRX = 7

In figure 3.4 the SPC-SD detector is seen to have much less computational com-

plexity than the standalone SD detector for all simulated values of U . The complex-

ity advantage of SPC-SD over SD becomes greater the larger the SNR. An SPC-SD



3 Statistical Partial Coverage (SPC) Front-End 49

detector with a smaller U has a smaller PF and therefore a smaller computational

complexity.

3.4.2 LD Coded Framework

The SPC front-end simulations for the LD coded framework consider a system with

NTX = 2, NRX = 2 with symbols drawn from a QPSK constellation. The information

symbols are encoded by the LD code described in section 2.6. As explained in appendix

A, the coded results are obtained by running the executable obtained by compiling

the LDcodedMIMO.cpp file. The system parameters as well as the range of SNRs

can be adjusted in this program file. The SPC front-end parameter, U , influences

the performance-complexity tradeoff of the system and so simulations are done for 3

informative values: U = {2.4, 2.6, 2.8}.

The performance and complexity trends of the decoder SPC-SD for the LD coded

framework are similar to those for the uncoded framework. In figure 3.5, the SER

performance of SPC-SD is shown. As analytically predicted by equation (3.26), an

SPC-SD decoder with a larger U has better performance. As a comparison, figure

3.5 also shows the SER performance of uncoded transmission with the same system

parameters (NTX = 2,NRX = 2,QPSK) at the same rate (Rc=Ru=4). The uncoded

transmission detection is done using the SD to achieve ML performance. It is seen

that the performance of the LD coded system, decoded with the SD, is better than

the performance of the uncoded system with the plots matching the results published

by Hassibi and Hochwald [10].

Figure 3.6 shows the BER performance of the same 3 SPC-SD decoders. The

SPC-SD decoder with the largest U has the best performance but all three SPC-SD

decoders are seen to have only marginally worse performance than the SD decoder.

When decoding LD coded symbols the simulation results, presented in figure 3.7,
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Fig. 3.5 LD coded SPC-SD decoder SER performance: QPSK, NTX =
2, NRX = 2

show that SPC-SD has lower computational complexity than SD. The complexity ad-

vantage of the two-stage decoder increases exponentially with the SNR. The relative

difference in complexity between the various SPC-SD decoders is constant for all sim-

ulated SNRs. Furthermore, the difference in complexities for the various SPC-SD

decoders is small compared to their difference from the complexity of the SD decoder.
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Fig. 3.6 LD coded SPC-SD decoder BER performance: QPSK, NTX =
2, NRX = 2

3.5 Comparison of the SPC Front-End to a Previously

Published MIMO Detection Scheme

The SPC front-end is similar to a MIMO detection scheme recently proposed by Choi

in [30]. Choi’s basic scheme is called projection based maximum likelihood (PR-ML)

and, unlike SPC, it isn’t a front-end but rather a full detector with equal performance,

in the case of uncoded transmission, as ZF detection [30].

The PR-ML detector, like the SPC front-end, operates on a symbol-by-symbol

basis. Each symbol in the constellation has the following associated metric, where Si,
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Fig. 3.7 LD coded SPC-SD decoder complexity: QPSK, NTX = 2,
NRX = 2

vi, and hi are defined as before, and r is the received vector.

MPR(ui) = ‖P⊥
Si

(r −
√

ρ

NTX

hiui)‖2 (3.40)

= ‖P⊥
Si

(

√

ρ

NTX

Hu + n −
√

ρ

NTX

hiui)‖2 (3.41)

= ‖
√

ρ

NTX

vi(ui − ui) + P⊥
Si
n‖2. (3.42)

MPR(ui) is computed for each ūi ∈ U , where U is the set of all symbols in the
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constellation, so that the detected ith symbol ui PR is:

ui PR = arg min
ui∈S

MPR(ui). (3.43)

It has been proved, and it can be seen from the analysis in section 2.4.2, that ui PR is

always equal to the ith element of the output of the ZF detector, ûi [26].

Central to SPC and PR-ML respectively are the following projections.

‖Pvi
(r −

√

ρ
NTX

Hû)‖2 = ‖
√

ρ
NTX

vi(ui − ûi) + Pvi
n‖2. (3.44)

‖P⊥
Si

(r −
√

ρ
NTX

hiui)‖2 = ‖
√

ρ
NTX

vi(ui − ui) + P⊥
Si
n‖2. (3.45)

One difference between these two projections is the subspace onto which the noise is

projected. The two subspaces, 〈vi〉 and 〈Si〉⊥, are related by vi = P⊥
Si
hi. Besides

including the noise in the subspace of vi, the PR-ML metric also includes the noise

outside of the subspace of H. The SPC front-end also allows for the pre-calculation of

w = r−
√

ρ
NTX

Hû which then only needs to be projected onto vi for each dimension

i.

Another difference between SPC and PR-ML is the way in which they are used.

The SPC scheme is a complexity reducing front-end to the SD, however, the PR-ML

scheme can be extended to the projection-based conditional ML (PBC-ML) scheme to

improve on zero-forcing performance. The PBC-ML scheme is a recursive detection

scheme where at each recursion a certain number of hard-decisions are made based

upon a reliability measure. The reliability measure assumes that the information

symbols were modulated using BPSK and therefore the PBC-ML can only detect

BPSK symbols. In contrast, the SPC front-end can handle any squared QAM symbol

constellation and is thus better adapted to higher rate applications. The metric used
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for PBC-ML is the same as the one used for PR-ML except that those symbols deemed

to have been previously detected are always subtracted out of the received vector.

Letting Hd be a subset of the channel matrix H whose columns correspond to the

decided symbols, ud, then the PBC-ML metric for the symbol ui is:

MPBC(ui) = ‖P⊥
Ci

(r −
√

ρ
NTX

Hdud −
√

ρ
NTX

hiui)‖2. (3.46)

In this case the Ci subspace is the matrix of all columns of H except hi and all of the

columns of Hd. The metric MPBC(ui) is minimized in the same way as was done for

the PR-ML scheme in equation (3.43) and the performance improves the more correct,

decided, symbols there are.

3.6 Channel Estimation Errors

The assumption that the receiver knows H perfectly is instrumental in the derivation

of the ZF detector, the SD detector, and the SPC front-end. In practice, however, the

receiver is required to estimate H and the estimation error will be non-zero. Figure

3.8 shows the performance impact of channel estimation errors on SPC-SD and SD.

In the simulations the detector uses an estimated channel, Ĥ, rather than the

actual channel, H.

Ĥ = H + ∆. (3.47)

Each element of the channel estimation error matrix, ∆, is modeled as independent

and identically distributed real Gaussian random variables:

∆ij ∼ N [0, N0/2], i ∈ [1, 2NRX ], j ∈ [1, 2NTX ]. (3.48)
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Fig. 3.8 SPC-SD detector BER performance comparison in the presence
of channel estimation uncertainty: 16-QAM, NTX = 5, NRX = 7

Figure 3.8 shows the impact of channel estimation errors for three values of the

estimation error variance and when there are no errors. It is seen that the ML perfor-

mance, obtained with the SD, is very dependent on an accurate estimation of H. In

fact, the introduction of a variance of 0.002 in the estimation of the channel matrix

elements causes SD performance reduction of over 1 dB.

Figure 3.8 also shows that the SPC front-end performance is not especially depen-

dent on the estimation uncertainty. The two-stage SPC-SD detector performs nearly

as well as the SD detector even as channel estimation uncertainty is introduced.
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Fig. 3.9 SPC-SD detector complexity comparison in the presence of
channel estimation uncertainty: 16-QAM, NTX = 5, NRX = 7

Figure 3.9 shows the complexity of SPC-SD and SD for the same channel estima-

tion error variances. It is seen that channel estimation uncertainty does not influence

the complexity reducing potential of SPC-SD. Increasing estimation errors causes in-

creased complexity SD and SPC-SD but does not change the relation between the

two.
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Chapter 4

Statistical Full Coverage (SFC)

Front-End

A detector combining the SFC front-end with the SD (SFC-SD) reduces computa-

tional complexity compared to the standalone SD detector. The lower computational

complexity as compared to the SD comes from only needing to detect a percentage

of the symbol vectors with the SD. For the remaining symbol vectors the output of

the ZF detector is used. The performance of the SFC-SD detector is kept close to the

performance of the SD by ensuring that only symbol vectors very likely to have been

correctly detected by the ZF detector are chosen. The steps in the SFC front-end are:

1. Obtain the output of the ZF detector (û from Section 2.4).

2. Obtain the output of a decision feedback step. This step is identical to the SPC

front-end’s decision feedback step (Section 3.1) and calculates w.

3. Perform a hypothesis test to see whether or not to detect the entire transmitted

symbol vector, u, sent in one channel-use from the NTX transmit antennas, with

the SD.
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4.1 Hypothesis Test

The SFC hypothesis test can be formulated as follows:

H0 : û = u → e = 0 → w : N [0, I] vs

H1 : û 6= u → e 6= 0 → w : N [He, I] .
(4.1)

This is a composite hypothesis test since e can assume multiple values under H1.

Deciding on H0 results in û being chosen as the output of the SFC-SD detector.

Otherwise, the SD is used to detect this entire vector of transmitted symbols.

Maximum Likelihood Estimates (MLE)

We use the notational convention that the MLE of a particular variable will have

the same variable name with the addition of a hat. The particular hypothesis being

assumed will be indicated by a superscript.

The MLE of e under H1, ê1, can be obtained using the orthogonal projection

matrix PH.

Hê1 = PHw

ê1 = (HTH)−1HTw. (4.2)

The MLE of e under H0 is ê0 = 0.
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4.1.1 Generalized Likelihood Ratio (GLR)

Following the same reasoning as for the SPC front-end in Section 3.2.2 the GLR,

Λ̂10(w), can be obtained.

Λ̂10(w) =
(2π)−NTX exp{−1

2
‖w − Hê1‖2

2}
(2π)−NTX exp{−1

2
‖w − Hê0‖2

2}

= exp{1

2
‖w‖2

2 −
1

2
‖w − PHw‖2

2}

= exp{1

2
‖w‖2

2 −
1

2
‖[I − PH]w‖2

2}

= exp{1

2
‖w‖2

2 −
1

2
‖P⊥

Hw‖2
2}. (4.3)

The GLR can be simplified further by replacing it by a scaled logarithmic GLR [21].

L(w) = 2 ln Λ10(w)

= ‖w‖2
2 − ‖P⊥

Hw‖2
2

= wTw − wTP⊥
Hw

= wTIw − wTP⊥
Hw

= wT(I − P⊥
H)w

= wTPHw

= ‖PHw‖2
2. (4.4)

The SFC front-end does its hypothesis test using the scaled logarithmic GLR,

L(w).

L(w)

H0

<

≥

H1

T 2. (4.5)
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The distribution of w is N [He, I] and so the distribution of L(w) is chi-squared with

nonconcentrality parameter λ2 and NTX degrees of freedom.

L(w) : χ2
NTX

(λ2). (4.6)

λ2 = (He)T (He)

= eTHTHe. (4.7)

For the SFC front-end, we define the false alarm (PF ) and detection (PD) proba-

bilities as follows.

PF = P (H1|H0) = P (L(w) ≥ T 2|H0) = P [χ2
NTX

(0) ≥ T 2]. (4.8)

PD = P (H1|H1) = P (L(w) ≥ T 2|H1) = P [χ2
NTX

(λ2) ≥ T 2]. (4.9)

The PD probability is an indication of the SFC-SD’s reduction from ML perfor-

mance. If PD = 1 then the SFC-SD detector has ML performance. If PD < 1 then

the SFC-SD detector will have worse then ML performance. The PF probability is an

indication complexity reduction of the SFC-SD detector compared to the SD detector.

If PF = 1 then the SFC-SD has the same complexity as the SD since every transmitted

symbol vector is detected by the SD. A low PF results in a large complexity reduction

since a larger percentage of symbol vectors that were correctly detected by the ZF

detector are not also detected the SD.
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4.1.2 Selection of the GLR Threshold, T

The decision threshold, T , can be selected using either a performance or complexity

target. If a certain performance with respect to ML performance is desired than the

PD equation is set equal to a value close to one and and this equation is solved for

T . If a certain complexity reduction target is desired then the PF equation can be set

equal to a value lower than one and then solved for T . Either of these equations can

be solved with the use of a chi-squared distribution lookup table.

4.2 Simulation of the SFC Front-End

4.2.1 Uncoded Framework

The simulations of the two-stage SFC-SD detector for an uncoded framework consider

a 5 transmit antenna and 7 receive antenna system. The symbols transmitted are

chosen from a 16-QAM symbol constellation.

The SER performance of the combined SFC-SD detector for four distinct values of

T is shown in figure 4.1. The SD detector and the ZF detector performance curves are

also included for comparison. The linear ZF detector has the worst performance and

the SD detector with ML performance has the best performance. Of the two-stage

decoders, the best performance is achieved when the threshold, T , is low, and most

of the frames are detected by the SD. For a low T the performance of the SFC-SD

detector is nearly identical with the SD detector. As T is increased the performance of

the SFC-SD detector becomes marginally worse than the SD detector. The reduction in

performance of the SFC-SD detector is independent of SNR since the GLR threshold

is independent of SNR. The BER performance graph, figure 4.2, exhibits the same

trends as the SER performance graph. The performance slope of the SFC-SD detector
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Fig. 4.1 Uncoded SFC-SD detector SER performance: 16-QAM, NTX =
5, NRX = 7

is seen to be nearly identical to that of SD detector whereas the performance slope of

the ZF detector is less steep.

In figure 4.3, the complexity of these detectors is plotted in terms of the average

number of nodes visited in the SD search tree. The single-stage SD detector has the

highest complexity followed by the two-stage SFC-SD detector with the lowest value

of T . The lowest complexity is achieved by the SFC-SD detector with the largest

value of T . A larger T ensures a greater complexity reduction since, in this case, fewer

frames are required to be detected by the SD.
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Fig. 4.2 Uncoded SFC-SD detector BER performance: 16-QAM,
NTX = 5, NRX = 7

The SFC-SD detector results, taken as a whole, show that by adjusting the thresh-

old, T , we can adjust the fundamental tradeoff that exists between performance and

complexity. For the uncoded framework it is possible, using the two-stage decoder, to

achieve a meaningful complexity reduction with only a marginal reduction in perfor-

mance.
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Fig. 4.3 Uncoded SFC-SD detector complexity: 16-QAM, NTX = 5,
NRX = 7

4.2.2 LD Coded Framework

Computer simulations of the LD coded framework and the two-stage SFC-SD decoder

show all of the same trends as were described for the uncoded framework. Our com-

puter simulations are of a system with 2 transmit antennas and 2 receive antennas

where the symbols are taken from a QPSK constellation. The information symbols

are encoded by the LD code described in section 2.6. The results of the simulations

of this coded system, in terms of both performance and complexity, show the same

trends as the uncoded system.
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Fig. 4.4 LD coded SFC-SD decoder SER performance: QPSK, NTX =
2, NRX = 2

The SER performance of SFC-SD for four values of T is shown in figure 4.4. For

comparison, the SER performance of an uncoded system at the same rate is also

included. The rate of the coded system is found using equation (2.5) and, for this

particular system, Rc = 4. To achieve Ru = 4 the uncoded system also transmits

QPSK symbols. It can be seen that the LD coded system has better performance

than the uncoded system but has only a slightly steeper slope. The BER performance

graph, figure 4.5, exhibits the same trends as the SER performance graph.

In figure 4.6, the complexity of the two-stage SFC-SD decoder is seen to be less
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Fig. 4.5 LD coded SFC-SD decoder BER performance: QPSK, NTX =
2, NRX = 2

than the complexity of the single-stage decoder. The complexity is lowest when the

parameter, T , is largest, and SD is done the least. The reduction in complexity

achieved by increasing T becomes less however as T becomes larger. For a small

T where the performance of the associated two-stage decoder is very close to ML a

significant complexity reduction is still achieved.
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Fig. 4.6 LD coded SFC-SD decoder complexity: QPSK, NTX = 2,
NRX = 2

4.3 Channel Estimation Errors

The assumption that the receiver knows H perfectly is instrumental in the derivation

of the ZF detector, the SD detector, and the SFC front-end. In practice, however,

the receiver is required to estimate H and the estimation error will be non-zero. The

channel estimation errors are modeled as additive real Gaussian random variables and

is further described in Chapter 3 using Equation (3.47) and Equation (3.48).

Figure 4.7 shows the impact of channel estimation errors for three values of the

estimation error variance and when there are no errors. Figure 4.8 shows the complex-
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Fig. 4.7 SFC-SD detector BER performance comparison in the presence
of channel estimation uncertainty: 16-QAM, NTX = 5, NRX = 7

ity of SD and SFC-SD for the same estimation errors. Both of these plots are done

keeping the SFC parameter T = 3.4 constant so as to emphasize the performance-

complexity tradeoff. In Figure 4.7 we see that as the estimation variance increases

the performance of both SD and SFC-SD decreases. However, the difference in perfor-

mance between SD and SFC-SD also decreases as the estimation variance increases.

Figure 4.7 shows that the SFC front-end performance can still be good in the presence

of estimation uncertainty.

Figure 4.8 shows the complexity of SFC-SD and SD for the same channel estima-
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Fig. 4.8 SFC-SD detector complexity comparison in the presence of
channel estimation uncertainty: 16-QAM, NTX = 5, NRX = 7

tion errors. By looking at Figure 4.7 and Figure 4.8 we see that, even with channel

estimation errors, the complexity-performance tradeoff remains. For example, when

T = 3.4, with N0 = 0.01 the performance of SFC-SD and SD are nearly identical but

the complexity reduction is very small; however, with N0 = 0.002 the performance of

SFC-SD is worse than SD but the complexity reduction of SFC-SD is more significant.
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Chapter 5

Detector Combinations and

Comparisons

In this chapter we compare all of the MIMO detection schemes previously discussed

and some promising combinations thereof. These comparisons are done using com-

puter simulations for both the uncoded and LD coded frameworks. Both error rate

performance and computational complexity are considered to emphasize how a tradeoff

can be achieved.

It is shown that SE/SD can be combined with either the SFC front-end or the

SPC front-end. Indeed, it is seen that any two, or even all three, of these complexity

reducing techniques can be combined to even further reduce computational complexity

with near ML performance.

5.1 Complexity Reducing Detector Combinations

In the last two chapters SPC and SFC front-ends were derived, analyzed, and sim-

ulated. It was seen that when either of these front-ends is appended to the SD the
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combined detector is able to reduce computational complexity as compared to the

standalone SD at very little cost to performance. It should not be surprising then

that the same is true when either of these front-ends are appended to SE/SD. The

SE/SD has the same inputs and outputs as the SD. Most importantly, thought, it

has the exact same performance as the SD but lower complexity. Therefore, in order

to achieve the lowest complexity detector possible, it makes sense to always append

either the SPC front-end or the SFC front-end to the SE/SD rather than to the SD.

It is also possible to combine the SFC front-end, the SPC front-end, and the

SE/SD to form what will be called the SFC-SPC-SE/SD detector. The SFC-SPC-

SE/SD detector is a serial concatenation of first the SFC front-end, which attempts

to pre-detect the entire symbol vector, then the SPC front-end, which pre-detects as

many individual symbols as possible, and finally the SE/SD, which jointly detects the

remaining symbols in the symbol vector. The block diagram, figure 5.1 below, shows

how these three detection techniques are serially concatenated.

SE/SDZF SFC SPC
r û

û

r̃

ũ

ûd ûr

Fig. 5.1 Block diagram of SFC-SPC-SE/SD

The output of the SFC-SPC-SE/SD detector is either û or the combination of

ûd and ûr. The SFC and SPC front-ends function in exactly the same way as they

were described in the previous two chapters. The SFC-SPC-SE/SD detector has two

parameters which affect its performance and computational complexity: T (for the

SFC front-end) and U (for the SPC front-end).
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5.2 Uncoded Detector Comparison: 16-QAM, NTX = 5 and

NRX = 7

The detector comparison for the uncoded framework considers the same NTX = 5

NRX = 7 and 16-QAM system as was considered in the SFC and SPC front-end

simulations. We present the results for certain parameters (T for SFC and U for SPC)

that achieve near-ML performance.
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Fig. 5.2 Uncoded detector SER performance comparison: 16-QAM,
NTX = 5, NRX = 7

In terms of SER performance figure 5.2 shows that both two-stage detectors, SPC-

SD and SFC-SD, have near-ML performance. In the range of simulated SNRs both
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Fig. 5.3 Uncoded detector BER performance comparison: 16-QAM,
NTX = 5, NRX = 7

of these two-stage detectors have a significant performance advantage over the linear

ZF detector. The SFC-SD detector performance, for a given value of T , has the same

slope as the SD detector performance. The SPC-SD detector performance, for a given

value of U , has nearly identical performance as the SD detector, below a certain SNR.

Above that SNR the SPC-SD detector performance has a less steep slope than the SD

detector performance.

It is therefore seen that the SPC-SD and SFC-SD detectors have different per-

formance characteristics as a function of SNR. Either two-stage detector can have
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performance as close to ML as desired at any SNR by proper parameter selection.

The three-stage SFC-SPC-SD detector performance characteristics are a combina-

tion of the performance characteristics of the SFC-SD and SPC-SD detectors. Below

the SNR where the SPC-SD performance slope changes SFC-SPC-SD has identical

performance to SFC-SD. Above this SNR SFC-SPC-SD has an equal performance

slope as SPC-SD.

The BER performance curves for these same detectors are shown in figure 5.3 and

they have the same trends as the SER performance curves.

16 17 18 19 20 21 22 23
10

−1

10
0

10
1

10
2

SNR

C
om

pl
ex

ity
 (

A
ve

ra
ge

 S
D

 lo
op

s)

SD
SE/SD
SFC−SD T=2.6
SFC−SE/SD T=2.6
SPC−SD U=3.2
SPC−SE/SD U=3.2
SFC−SPC−SD T=2.6 U=3.2
SFC−SPC−SE/SD T=2.6 U=3.2

Fig. 5.4 Uncoded detector complexity comparison: 16-QAM, NTX = 5,
NRX = 7
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The complexity of the various detectors is shown in figure 5.4. When the SD is re-

placed by the SE/SD in any of the multi-stage decoders the performance is unchanged

but the complexity is decreased. The complexity reduction from the substitution of

SE/SD is seen to decrease as the SNR is increased.

Besides the substitution of the SD by the SE/SD there is seen to be always a

cost of increased complexity associated with improved performance. The SPC front-

end and the SFC front-end allow for different performance-complexity tradeoffs. It

is never the case where either SPC-SD or SFC-SD achieves better performance and

lower complexity. The lowest complexity detector presented is the SFC-SPC-SE/SD

detector but this detector is not the best performing multi-stage detector.

5.3 LD Coded Decoder Comparison: QPSK NTX = 2 and

NRX = 2

The detector comparison for the coded framework considers the same LD coded NTX =

2 NRX = 2 QPSK system as was considered in the SFC and SPC front-end simulations.

The LD code used was described in section 2.6. Like the uncoded comparison we

present the results for certain parameters (T for SFC and U for SPC) that achieve

near-ML performance. However, in our decoder comparison, we consider the results

for other parameter values presented in the previous two chapters.

In figure 5.5 it is seen that both two-stage detectors, the SPC-SD and the SFC-SD,

have near-ML SER performance. Figure 5.6 presents the BER performance results for

the same set of detectors. For the presented parameters, LD coded transmission de-

coded by either two-stage detector has better performance then uncoded transmission

decoded by the SD but worse performance than coded transmission decoded by the

SD. Both two stage decoders have the same performance trends as described in the
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Fig. 5.5 LD decoder SER performance comparison: QPSK, NTX = 2,
NRX = 2

uncoded case.

To further emphasize that neither front-end has intrinsically better performance

the presented LD coded results use parameter values that result in SPC-SD having

better performance (but higher complexity) than SFC-SD. In the uncoded detector

comparison the chosen parameters resulted in SFC-SD having better performance (but

higher complexity) than SPC-SD.

For the coded system, the SFC-SPC-SE/SD decoder is seen in figure 5.7 to have

the lowest complexity. It is still the case that replacing the SD by the SE/SD in the
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Fig. 5.6 LD decoder BER performance comparison: QPSK, NTX = 2,
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multi-stage decoders reduces complexity with no reduction in performance.
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Chapter 6

Conclusions

There is a fundamental tradeoff between decoding complexity and error-rate perfor-

mance. The two SD front-ends introduced in this work, SPC and SFC, allow both the

LD decoder and the uncoded detector to exploit this tradeoff. Simulations of both

SPC-SD and SFC-SD decoders demonstrate this tradeoff. Changing the system pa-

rameter, U for SPC and T for SFC, is the means by which the complexity-performance

tradeoff is adjusted. Moreover, these simulations show how this tradeoff is affected

by SNR. SPC-SD achieves ML performance up to a certain threshold. SFC-SD has

a performance slope parallel to ML performance. By combining both front-ends into

a SFC-SPC front-end further tradeoffs between complexity and performance can be

achieved. It is possible to choose the parameters so that the performance of the two-

stage decoder has only slightly worse performance but much lower complexity than

the SD. Both SPC and SFC have their own advantages and disadvantages and each

achieves a unique complexity-performance tradeoff.

A key feature of both the SPC front-end and the SFC front-end is their ability

to precede any variant of the SD. These techniques can therefore leverage existing

and future enhancements of the SD. By substituting SD by SE/SD the complexity
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of the two-stage decoder is reduced with no reduction in performance. Although

computer simulations show that, in the presence of channel estimation uncertainty,

the performance of SD decreases it is also seen that SPC and SFC remain a viable

means of obtaining a complexity-performance tradeoff.

Compared to a benchmark uncoded MIMO system detected with the SD, a LD

coded MIMO system, transmitting at the same data rate, decoded with a sub-ML

decoder, either the SPC-SD or the SFC-SD, can achieve better performance with

lower complexity.
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Appendix A

Computer Simulation Overview

and Guide

This section explains how to use the C++ programs that were used to generate the

simulations in this thesis. The capabilities and limitations of these programs are also

discussed. The following table provides an overview of each source code file used in

the simulations. All of these files can be found on the attached CD.

Table A.1 C++ source files

Source file name Description

uncodedMIMO.cpp Uncoded simulation entry point and primary flow.

LDcodedMIMO.cpp LD coded simulation entry point and primary flow.

sphere1.cpp Implements SD based on the flowchart of [11].

sphere2.cpp Implements SE/SD based on the flowchart of [14].

QR.cpp QR factorization on an arbitrary matrix.

utilities.cpp Miscellaneous procedures.

matrix.cpp Various matrix operations.

To run a simulation put all of the above files in the same directory. These programs

have been successfully compiled and run using the Linux standard g++ version 3.2.3-

42 compiler and the Microsoft Visual C++ version 6.0 compiler. To run a simulation
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of the uncoded framework compile uncodedMIMO.cpp and run the executable and

redirect the standard output to a text file. For example, you can simulate the uncoded

framework on the Linux operating system by running the following commands:

Linux> g++ uncodedMIMO.cpp -o execute test

Linux> execute test > output test file.txt &

When the execute test executable finishes, the text file output test file.txt stores

the results. To run a simulation of the LD coded framework compile the LDcoded-

MIMO.cpp file. For example, you can simulate the coded framework on the Linux

operating system by running the following commands:

Linux> g++ LDcodedMIMO.cpp -o execute coded

Linux> execute coded > output coded file.txt &

The adjustable constants for an uncoded simulation and their allowable values are

presented in table A.2. The range of SNR values to be simulated can also be set in both

Table A.2 Simulation adjustable constants

Description Allowable values

The number of transmit antennas. 1 ≤ ACTUAL NUM TX ≤ 25

The number of receive antennas. 1 ≤ ACTUAL NUM RX ≤ 25

The size of the symbol constellation. PAM = {2, 4, 8, 16}
The minimum number of channel ralizations per SNR. 1 ≤ TRIALS

The minimum number of symbol errors per SNR. 0 ≤ MIN ERROR

The SPC front-end U parameter. 0 ≤ SPC NOISE

The SFC front-end T parameter. 0 ≤ pure Ph

Channel matrix elements error variance 0 ≤ VAR UNCERT

the uncoded simulation and in the LD coded simulation. The adjustable variables are

the same in the LD coded simulation except that the number of transmit and receive

antennas are not adjustable.
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